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$ Department of Applied Physics, Faculty of Engineering, Nagoya University, Nagoya 
464-01, Japan 
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Abstract. We study the dynamics of domain growth in a system with multiply degenerate 
ordered states. Using a phenomenological model recently proposed by us, we perform two- 
dimensional simulations to study the time-dependent behaviour of such degenerate systems. 
In the final stage the average size of the ordered domains is found to grow with timet as t”’, 
independently of the degeneracy p .  The p-dependence of the asymptotic scaling functions 
for the domain size distribution is also discussed. 

Recently the dynamics of ordering and coarsening processes in multiply degenerate 
systems has been attracting much interest [1-6]. For example, the time-dependent 
behaviour of order-disorder transitions of Cu3Au [l ,  21 and Ni,Mn [3 ,4]  alloys has 
been investigated by various authors, using time resolved neutron or x-ray scattering 
techniques. In these systems, Au or Mn atoms occupy any of four equivalent sites 
for the FCC lattice. Therefore, the degeneracy of the ordered states is four. Recent 
experimental results for such degenerate systems confirm that three distinct physical 
regimes can be distinguished: nucleation, ordering, and coarsening. Initially the alloy is 
annealed at a high temperature in the disordered state, and at time t = 0 it is rapidly 
quenched to a fixed temperature below the ordering temperature. Clusters of the 
ordered phases then appear within a matrix of a disordered phase. The individual clusters 
may be in any of the p-allowed ordered states. As time goes by, the isolated cluster grows 
in size. This process may be termed ordering. Eventually the clusters meet each other, 
and the resulting system is composed of ordered domains in different ordered states, 
separated by domain walls. At  this point the coarsening process begins, and the average 
size of ordered domains continues to grow. A similar process is observed in grain growth 
[7] and 2~ soap froth [8,9]. 

To study the growth kinetics of such degenerate systems, two different computational 
models have been proposed. One is the kineticp-state Potts model [lo], and the other 
is the vertex model [ll ,  121. However, these models have been found to describe only 
the coarsening regime. Thus, we have recently proposed a model that can be used to 
distinguish the above time regimes [13]. This model is based on the time-dependent 
Ginzburg-Landau model [14] for the phase transition of superconductors, and is anal- 
ogous to the model describing the commensurate-incommensurate transition [ 151. In 
previous work 1131 we have simulated the model to visualize typical evolution patterns. 
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’ I  Figure 1. An arrow at lattice site n represents the 
phase variable S(n, t).  

However, the simulations are still provisional as far as the time-dependent behaviour of 
the model is concerned. For reliable studies of the growth law of ordered phases, we 
simulate fairly large systems in 2D here. 

In studying the dynamics of a system with spatial modulations, it is convenient to use 
a complex field, rather than a real one. Then, let g(r,  t )  F(r, t )  exp(iS(r, t ) )  be the 
complex scalar field at position r and  time t .  The amplitude F(r,  t )  of g(r,  t )  is positive 
valued and distinguishes stable ordered states from disordered ones, while the phase 
variable S(r,  t )  describes differences among the multiply degenerate ordered states. We 
assume that the equation describing the dynamics of the system considered here can be 
written as [13]: 

dg(r,  t) /at  = -L  GG[g]/Sg*(r, t )  (1) 
where L is a positive constant, the asterisk denotes the complex conjugate and the 
coarse-grained free energy G[g] is a functional of g(r,  t )  and is taken to be 

G[g] /dr(i lVg12 + Wg]) = /dr( i lVF12 + iF2(VSI2  + W[g]) (2) 

where p is a positive integer corresponding to the level of degeneracy of ordered states, 
and U is a positive constant. 

After some algebraic calculations it is found that if 0 < U < A,, Wg] has p-fold- 
degenerate minima at points (S,, Fe) ,  j = 0, 1, . . . , p - 1 with S, = 2nj/p and -1 + 
FZ - vF{-~ = 0. Here A, is defined by 

[ 2 / ( ~  - 411 [ ( P  - 2)/(p - forp > 4 

forp  = 4 (4) 
forp  = 2 and 3. 

This model is rather simplified, but is expected to capture the essence of the dynamical 
processes in a system with multiply degenerate ordered states. Note that in the present 
model, nucleation cannot be dealt with. 

We solve equations (1)-(3) numerically, using the standard implicit formula, on an 
N 2  square lattice with periodic boundary conditions. The parameters are chosen to be 
L = 0.01, the time step At = 1,  and the lattice spacing Ax = Ay = 1. Initially at each 
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Figure 2. Time evolution of ordered regions for the case p = 4 at times (a) t = 50. (b) 100, 
(c) 500, (d) lo3, (e) 5 x lo3, (f) lo4. Arrows are plotted at lattice sites satisfying F(n, t ) /  
F, > 0.9 and IS(n, t )  - jlc/21 < n/16 fori = 0, 1 ,2 ,3 .  

lattice site n, F(n, 0) is chosen to be the positive value of a Gaussian random number 
with average 0 and variance 0.05, while S(n ,  0 )  mod 2 n  is chosen to be a uniform random 
number in the interval (-n, n). Note that we have examined other parameter values 
and the results below do not change qualitatively. For more details of the simulation 
method, see [13]. 

For the time being, we set p = 4 and U = 0.1. In figure 1 the ordered lattice site n is 
marked by an arrow. Here the orderedlattice site is characterized by the site withF(n, t) /  
Fe > 0.9 and IS(n, t )  - Si/ < n / 4 p ,  j = 0,1,  . . . .  p - 1. In figure 2 the pattern evolution 
of the ordered regions is displayed on a 502 square lattice. From these figures we can see 
that four types of ordered cluster emerge and grow initially, and the larger domains 
coarsen at the expense of smaller ones in the final stage. 

Now we discuss the time-dependent behaviour of the system. For this purpose we 
simulate the model using a 2562 square lattice. Moreover, the following results are 
obtained by averaging over 50 independent simulation runs. In figure 3 we show the time 
evolution of the average size of ordered regions, R(t),  defined by 
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Figure 3. Tim5 evolution of the average ordered 
domain size [R( t ) /R( t , ) ] ,  against t with t o  = 500. 
A straight lineisalsoshownwithaslopeindicated. 

R(t )  = N i ( t )  Ax Ay/n(t) 
d i  

where Ni(t)  is the number of lattice sites belonging to the ith ordered region and n(t) is 
the total number of such ordered regions at time t. By the least squares method for 50 
simulation data we obtain the growth exponent 0.48 i 0.04 in the final stage. However, 
we cannot decide on the growth exponent in the early stages due to large statistical 
errors. Moreover, the &power law is found to occur after a certain time to,  where 
X i  Ni(t,) = 2562. In the present case we find to = 500. Similar final-stage behaviour has 
been obtained numerically for the p-state Potts model [ 101 and the vertex model [ l l ,  
121. On increasing the value of U in equation (3), vortex patterns often appear in the 
system, as was pointed out in [16]. Here vortices are characterized by regions with 
F(n, t ) /Fe  < 0.9 in the final stage. This vortex formation, however, is found not to 
influence the growth law. 

Next, to study the asymptotic behaviour of the system, we discuss the normalized 
distribution function h(R,  t )  of domain size R. In figure 4 we show the normalized 
distribution function H(x) = R(t)h(R, t )  plotted against x R/R( t )  for various times, 
satisfying 

ib; H ( x )  dx = Jos x H ( x )  dx = 1. 

From figure 4 we find that the distribution function reaches an asymptotic scaling 
function. Moreover, as was pointed out in the previous models [7,9] the scaling function 
can be well approximated by the log-normal distribution function f(xlp, U )  with two 
parameters p and U ,  given by 

In figure 4 the log-normal distribution function with two parameters 0 = 0.45 and 
p = -u2/2 is represented as a full curve. Here the value of p is chosen such that the first 
moment 

jom Xf(XIP, 4 dx 

is equal to one, while the value of U is more or less arbitrary. 
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Figure 4. Normalized domaLn size distribution 
function H ( x )  againstx = R/R( t )  at times t = 500 
( A ) ,  lo3 (0) and 5 x lo3 (0). 

Figure 5. The parameter U as a function of 
degeneracyp, which fits the simulation data weil. 

Finally we comment on the dependence onp- of the above results. We have simulated 
the model for 2 s p s 12. From these simulation data the growth exponent in the final 
stages is found to be independent of the degeneracyp. However, the asymptotic scaling 
function for the domain size is found to depend onp,  although the function of each value 
of p is well approximated by the log-normal distribution. In figure 5 we show the value 
of CT as a function of p ,  which fits the simulation data well. With increasing degeneracy 
p ,  the distribution function sharpens. This result is similar to that of the p-state Potts 
model [ 101. 

In the present letter we have discussed the scaling function only for the domain size 
distribution in 2 ~ .  To check the validity of the present model, the scaling behaviour of 
the scattering structure factor will be discussed elsewhere. Moreover, the model in which 
equation (1) is replaced by 

ag(r, [)/at = LV2 dG[g]/dg*(r, t )  (6) 
is expected to describe the dynamical processes in multiply degenerate systems with 
conserved order parameter. The simulation of this modified model, as well as the 3~ 
simulation, is now under way. 
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